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Numerical study of natural convection 
in an enclosure with localized heating from below- 

creeping flow to the onset of laminar instability 

By K. E. TORRANCE AND J. A. ROCKETT 
National Bureau of Standards, Washington, D.C., 20234 

(Received 24 June 1968) 

An analytical study was made of the natural convection induced in an enclosure 
by a small hot spot centrally located on the floor. The enclosure was a circular 
cylinder, vertically oriented, with height equa.1 to radius. A Prandtl number of 
0.7 (air) was assumed; the Grashof number (Gr)  was based on cylinder height and 
hot spot temperature. The equations of fluid flow in axisymmetric cylindrical 
co-ordinates were simplified with the Boussinesq approximation. The equations 
were solved numerically with a computationally stable, explicit method. The 
computation, starting from quiescent conditions, proceeded through the initial 
transient to the fully developed flow. Solutions were obtained for Gr from 
4 x 104 to 4 x lolo. The theoretical flows are in excellent agreement with experi- 
mentally observed laminar Aows (Gr 5 1.2 x lo9) which are discussed in a com- 
panion paper, Torrance, Orloff & Rockett (1969). Turbulence was observed 
experimentally for Gr 2 1-2 x lo9. When the theoretical calculations were ex- 
tended to Gr = 4 x lolo, a periodic vortex shedding developed, suggestive of the 
onset of laminar instability. The theoretical results reveal a JGr scaling for the 
initial flow transients and, a t  large Gr, the velocities and heat transfer rates. 

1. Introduction 
Thermally induced fluid motion in confined spaces is of widespread interest 

in fluid mechanics. Indeed, numerous examples of such flows may readily be 
cited from everyday experience. The present study was motivated by a hope- 
fully not-so-everyday experience; namely, the transient natural convection 
arising from an incipient fire in a room. Most fire detectors depend upon this 
natural convection to carry sensible evidence of the fire to a detector. A know- 
ledge of the induced convective flow is thus essential for the design of an efficient 
fire detection and localization system. A full understanding of these flows 
represents a formidable task, inasmuch as they depend upon the size and loca- 
tion of the fire, the room geometry, and a host of other variables. This work waa 
restricted to that portion of the general problem in which laminar flows prevail 
and to one simple geometry. 

Transient and steady-state convective flows are considered in a vertical circular 
cylinder with the fire simulated by a small heat source in the centre of the floor. 
Two-dimensional, axisymmetric cylindrical co-ordinates are employed, thereby 
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precluding the possibility of computing completely turbulent flows. The governing 
non-linear partial differential equations for energy and vorticity are approxi- 
mated by an explicit finite difference scheme. The scheme differs from the 
numerical methods of Barakat & Clark (1966) and Wilkes & Churchill (1966) in 
that vorticity and energy are conserved within the finite difference mesh. This 
is essential for a faithful approximation of the physical system. A special formula- 
tion is used for the non-linear derivatives which leads to unconditional numerical 
stability. The numerical methods of Fromm (1964, chapter 10) and Wilkes & 
Churchill ( 1966) use higher order approximations for these non-linear deriva- 
tives, but do not possess the stability of the present method. This stability per- 
mits us to study flows where the non-linear convective terms can be dominant, 
as in the present problem. 

A formal statement of the problem is presented in $2, followed by a description 
of the numerical method in 3 and results in 4. 

2. Formulation of the problem 
Consider the motion of a viscous fluid within a vertical cylinder of height a and 

radius b (see figure 1). Erect a co-ordinate system (2, r )  in the centre of the base. 
The fluid is initially motionless and a t  a uniform temperature To. The enclosure 
walls are also a t  this temperature, except for a small centrally located circular 
spot on the base of radius c which is a t  a temperature Th > To. The problem is to 
find the subsequent velocities, temperatures, and rates of heat transfer to the 
enclosure as functions of time and position; and to obtain the fully developed 
solution. 

The Boussinesq approximation is used; in this density ( p )  is assumed constant 
except for the generation of buoyancy forces. Other fluid properties are taken 
as constant: kinematic viscosity ( Y ) ,  thermal diffusivity ( K )  and volume ex- 
pansion coefficient (p). We introduce the following dimensionless quantities: 
time, = ( K / a 2 ) t ;  vertical and radial co-ordinates, X = x/a and R = ria; vertical 
and radial components of velocity, U = (a/K)u and V = ( u / K )  w; and temperature 

The flow is assumed to be axisymmetric. Therefore, the continuity equation 
is automatically satisfied by the introduction of a dimensionless stream function 
Y. Furthermore, the dimensionless vorticity vector defined by S?, = curl U has 
only an azimuthal component, G2 = Qk, where k is the azimuthal unit vector and 
Q = aV/aX - aU/aR. The following relations are provided by the definitions of 
stream function and vorticity 

8 = (T - To)/(Th - TO). 

and 

The energy equation takes the form 
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in the absence of viscous dissipation and compressibility effects. The equation 
of continuity was not used to rearrange the transport terms on the left-hand side. 

By taking the curl of the momentum equations pressure is eliminated and we 
obtain the equation for vorticity.? 
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The boundary conditions$ for r 2 0 are: 
x = o, o < R < R,; YP = aYrlax = 0. 

o < R < R , ;  e = i .  
R = R,.; 8 = 0.5. 

R,. < R < Rb; 8 = 0. 

X = 1, all R; 
R = 0, all X; 
R = R,, allX; 

YP = avlax = e = 0. 
YP = Q = a q a ~  = o. 
YP = aYlaR = e = 0. 

t Equation (4) is equivalent to equation (19.11-1) of Milne-Thomson (1960) if the 
buoyancy source term Gr Pr2aOlaR is added. 

$ Note that explicit boundary conditions for vorticity on the solid boundaries me not 
available. Fortunately, this causes no difficulty with the solution method used, as will 
be explained later. 

3-2 
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The boundary conditions introduce two parameters: the aspect ratio of the 
enclosure (radius/height) R ,  = b/a and the relative size of the heat source (heat 
source radius/enclosure height) R, = c/a. 

The velocities U and V are retained explicitly in the problem formulation, 
because their computed values yield an immediate picture of the flow pattern. 
However, an examination of (1)-( 6) reveals that the essential dependent vari- 
ables are 0, Q, and ‘Ir, while the independent variables are X, R and T .  The 
parameters of the problem are Gr, PY, R, and R,. 

3. Numerical method 
3.1. The grid system 

Equations (1)-( 4) will be called the velocity, stream function, temperature and 
vorticity equations, respectively. The temperature and vorticity equations are 
parabolic, while the stream function equation is elliptic. An approximation to 
their solution will be obtained at a finite number of grid points having co-ordinates 
X = iAX,  R = .jAR, and at discrete times r, where i , j and n are integers. The 
grid spacings in the X and R directions are de’noted by A X  and AR. The symbol 
r, denotes the time level after the nth time step AT,; 7, = T , - ~  + AT,. The size 
of AT is limited by stability considerations, and is calculated before each time 
advancement. 

The values of 8, Q, ‘F, U and V at each grid point should be thought of as 
average values over a small volume of fluid surrounding the point. This is the 
lumped mass concept, in which the physical system shown in figure 1 is replaced 
by a system of interconnected nodes. Except along the centreline, each interior 
node replaces a ring of fluid of height A X  and radial thickness AR. The exchange 
of mass, energy and vorticity via the interconnexions between the nodes can 
then be associated with the various terms arising from the finite difference 
approximation. 

3.2. TheJinite difference scheme 
Suppose that all quantities are known at a time T (the initial condition corre- 
sponds to the special case r = 0) .  The fields of temperature and vorticity at 
interior grid points are advanced across a time step AT to the new level r + Ar 
by using explicit finite difference approximations to the temperature and vor- 
ticity equations. At any grid point the term a0jaR in the vorticity equation and 
the velocities U and V are treated as constants over the time step. All linear 
space derivatives are approximated by three-point central differences. 

To preserve the stability of the numerical scheme the non-linear space de- 
rivatives (a( U8)/aX,  a(EVO)/aR, a( UQ)/aX and a(VQ)/aR) are approximated with 
special three point non-central differences. The special forms are 

when the coefficients +( Ui+l,j  + Ui,j) and g(U,,j + are positive and 
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when the coefficients are negative. The variable f represents either 8 or Q and 
the subscripts denote the spatial location of grid points. When the mean velocities 
i(&+l,j+ ?&) and are of different sign, a mixed expression is 
required which contains one term from each of equations ( 7 ) ,  as appropriate. A 
similar procedure is used to approximate a(RVO)/aR and a( VQ)/aR according 
to the sign of Q(K,j+l + 6, i) and &(K,j + K, j-l). 

When the mean velocity Q(L$+l,j+ l&), for example, is multiplied by fi,j or 
fi+l, in equations ( 7 ) ,  the product represents a convective transport off between 
node points (i + 1 , j )  and (i,j). The selection of fi, or fi+l,j, according to the sign 
of the mean velocity, is necessary for f to be strictly conserved in transport be- 
tween the nodes. A Taylor series analysis of this scheme reveals that one of the 
truncation errors introduces a false viscosity and heat diffusivity into the nu- 
merical solutions of the vorticit,y and temperature equations. This error is sig- 
nificant only at high Grashof numbers, where the false viscosity enhances fluid 
stability. The error can be largely eliminated by using the more conventional 
three point central differences, but this scheme leads to major problems of numeri- 
cal stability. Stability can be achieved at  high Grashof numbers only by using a 
very fine mesh, which leads to prohibitively large computer storage requirements. 
For additional details see Torrance (1968), wherein comparisons of the stability, 
traucation errors, and conservation properties of several numerical schemes 
are provided. 

The relevant finite difference approximations to the temperature and vor- 
ticity equations are (8) and (9) for the case where the non-linear derivatives are 
represented by forms similar to (7 a) .  The equations are used to advance across the 
time step A7 from time 7 to time 7' = 7 + A r .  Primed and unprimed variables 
respectively denote values at  time levels 7' and 7. Temperature is advanced first 
with 

8; j - oi,j + (G+1, j + ui, j) oi, j - (Ui, j + k 1 ,  j) oi-1, j 

A7 2AY 

(j + 1/21 (5, j+l + K, j) oi, j - (j - 1/2) (G, j + vi, j-1) oi, j-1 

2jAR + 

€allowed by 

.a;, j - Qi, j (&+l, j + ui, j) Qi, j - (ui, j + G-1, j) Qi-1, j 

2AX + Ar 
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Note that the derivatives containing the radial co-ordinate R introduce this 
co-ordinate at integer and half-integerj-values, as appropriate. At the centreline, 
;I special form of (8) is used which incorporates boundary conditions (6) at 
R = 0: 

Equations ( 8 ) )  (9) and (10) thus permit O i , i  and at all interior grid points to 
be explicitly calculated in terms of known quantities. 

The new vorticities Ql, are next introduced into the stream function equation, 
which is solved for the  new stream function field by the method of successive 
over-relaxation. Thus, if ".(is\ denotes the approximate stream function at a point 
after s iterations, a further approximation 'FtJ1) is obtained from 

The optimum value of the relaxation parameter o can be calculated for a given 
system of grid points. For the system used in the present study, a value w = 1.9 
was used and gave good convergence after thirty-five iterations.? 

The new wall vorticities are then calculated from the stream function field 
in the vicinity of the wall. The defining equation for vorticity (2) reduces to 
Q =  - (1 /R)a  2Y/aX2along the top and bottom walls and to Q = - ( l/Rb) PFlaR2 
along the vertical wall. A combination of Taylor series expansions for '4' near the 
walls, together with the boundary conditions that W and its normal derivative 
be zero, yields wall vorticity approximations such as the following, which applies 
along the bottom 

SYi, j - Y2, j Q;,j = - 
2(jAR) (4X)2'  

Thus, the new wall vorticities are computed from stream functions which, 
through ( l l ) ,  were themselves just calculated from the new vorticities at  interior 
grid points. 

Finally, new fields of U and V are obtained from three-point central difference 
approximations to the velocity equations. The fields of 8, Q, Y, U and V are 
thus made current a t  time level T' = T + 47. 

The foregoing finite difference approximations conserve energy and vorticity 
within the grid system. If the equations for temperature, (8) and (lo),  or vorticity 
(9) are summed over all interior grid points, no spurious sources or sinks of these 
quantities are found. The net' energy or vorticity transport from the wall mesh 
points into the enclosure just balances the net increase of energy or vorticity 
within the mesh sysem. Heat transfer rates to and from the enclosure can thus 

t The method of successive over-relaxation is described by Todd (1962, pp. 392-4). 
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be determined by calculating the transfer from wall mesh points. At steady 
state, when there is no net increase of energy within the enclosure, the heat 
transfer into the enclosure balances the heat removed. The foregoing conser- 
vation follows partly because of the form used to approximate the convection 
terms (equations (7 ) ) .  The importance of care in the choice of this approximation 
has been noted by Fromm (1964). 

3.3. Stability considerations and the time step AT 

A t  this point, the size of the time step AT for the next time advancement is de- 
termined. This is limited by stability considerations which can be given a very 
simple interpretation. Equations (8), (9) and (10) are rewritten to express 8{,j 
and a:, as explicit linear combinations of computed values at time T ;  

and 
The letters a, b, and c denote quantities which are constant over a time step. 

and b are all positive; that is, for Ic = 1, 2, . .., 5 

0: z, 3 . = a l e i + 1 , j + ~ 2 ~ i - 1 , i + a 3 ~ i , i + ~ , ~ , , i + l + ~ g e ~ , j - 1  
a:, j = b1 Q$+1 j + b2 Q-1 j + b3 fit, j + b, Q, j+l+ b, !a&, j-1+ C.  

( 1 3 4  
(13b) 

Stability in the sense of Lax & Richtmyer (1956) follows if the coefficients a 

a, 2 0, b, 2 0. (14) 

A rough rule to this effect was stated very simply by Dusinberre (1961, p. 13) 
for a linear temperature equation; more sophisticated proofs (Lax & Richtmyer 
1956 and Barakat & Clark 1966) lead to criteria which are equivalent to (14). 
Furthermore, Lax & Richtmyer (1956) state that if their stability criterion is 
met, the initial conditions meet certain requirements (we assume they do), and 
that the finite difference approximation (13) is consistent with the differential 
equations (3) and (4), then the solutions of (13) converge to that of (3) and (4) as 
A X ,  A R  and AT tend to zero. Thus, stability leads to convergence. 

It is not difficult to show that the present finite difference formulation satisfies 
the stability requirement (14). The coefficients uk, b,(Ic = 1,2 ,4 ,5)  of (13) are 
always positive, whereas a, and b, can be made positive by restricting the size 
of the time step AT. In so far as three equations are involved ((S), (9) and (10)) 
which use special forms similar to (7) to approximate the nonlinear derivatives, 
several different expressions arise in order to make u3, b, > 0. When Pr < 1 and 
approximations similar to ( 7  a)  are used, the temperature equation provides 
the greatest restriction on AT. Equation (8) requires that 

whereas equation (1  0) requires 

Additional forms similar to (15) arise when the alternate approximations ( 7 b )  
are used. 

The field of mesh points is scanned in order to determine the largest per- 
missible AT which will satisfy the stability requirements. With AT thus known, 
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the field variables 0, Q, I!!, U and V can be safely advanced across the new time 
step AT by repeating the whole cycle described in 33.2. 

The results to  be presented in the next section employed a grid spacing of 
AX = 0.02 and AR = 0.05, with a total of 1071 mesh points. This was selected 
as an optimal spacing to  provide good accuracy with a reasonable amount of 
computer time on the basis of numerical experiments a t  Gr = 4 x lo6 and 4 x 107. 
This spacing is marginal, however, for the resolution of velocity gradients a t  
higher Gr. A finer mesh spacing in the X direction than in the R direction was 
used so as to provide a better description of the boundary layer along the ceiling. 
The time step Ar used was 95 % of that permitted by stability. A single computa- 
tion cycle took about one-half second on a high speed electronic computer, 
Computer time was reduced by updating the fields of W, U and V less frequently 
(typically every five cycles) as steady state was approached. A sensitive indica- 
tion of the approach to steady state was provided by the overall energy bnlarice 
on the enclosure. When the heat transfer rates into and out of the enclosure 
agreed to within 1 yo, steady conditions prevailed.? 

4. Results 
This investigation covers a range of Grashof number from Gr = 4 x  lo4 to 

4 x lolo. A Prandtl number typical of air and other gases was assumed; Pr = 0.7. 
The geometry of the enclosure was held fixed with an aspect ratio R, = 1 and a 
relative heat source size R, = 0.1. 

The flow patterns and temperature fields are illustrated in figures 2-7 with 
graphs displaying sets of streamlines and isotherms. The location of these stream- 
lines and isotherms was determined by linear interpolation of the computed 
values a t  the mesh points. I n  each of the graphs, the centreline of the cylindrical 
enclosure is shown on the left. The abscissa is the radial co-ordinate R, and the 
ordinate is the axial co-ordinate X .  The heat source on the floor is denoted with 
a thick line between R = 0 and R = 0.1. Additional heat transfer results, velocity 
profiles, temperature profiles, and trends with Gr are illustrated in figures 4 and 

4.1. Xteady-state streamline and temperature Jields 

The variation of the steady-state streamline field with Grashof number is illus- 
trated in figure 2. This figure contains six individual graphs, which respectively 
pertain to the sequence Gr = 4 x lo4 to  4 x lo9. I n  each graph, a dot indicates the 
location of the maximum value of stream function, Ymax; the numerical value of 
which is listed in the caption. The streamlines correspond to  I!! values of 0.1 (0.2) 
0.9 of I!!,,,. The solid walls and centreline correspond to  Y = 0. The direction 
of fluid motion along the streamlines is denoted with small arrowheads. 

The flow pattern for Gr = 4 x lo4 (figure 2 (a ) ) ,  reveals a rolling vortex cent,red 
at approximately R = 0.5, X = 0.5. The maximum value of stream function, 
'FmitX, occurs a t  the centre of this vortex. As Gr is increased, the vortex centre 
moves up and to the right. At the same time, the streamlines near the centreline, 
the ceiling and the right-hand wall move closer together as a result of higher 

8-11. 

t This was true for Gr less than 4 x 10'0. 
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velocities in these regions. The magnitude of Tmax also increases, indicating that 
more fluid circulation exists. 

At Gr = 4 x lo9 (figure 2 (f)), the flow is dominated by the rising column of 
hot gas a t  R = 0. This column entrains surrounding fluid and impacts the ceiling 
with a resulting stagnation point at X = 1, R = 0. After impact, a wall jet is 
formed along the ceiling which flows out radially from the centreline. This layer 
of warm fluid turns a sharp corner near X = 1, R = 1 and starts to flow down 
along the vertical wall. The momentum of the descending fluid carries it well 
down the wall against the retarding effect of its buoyancy. As the fluid is slowed 
down, i t  turns inward and rises t o  a height determined by its residual buoyancy. 
The fluid continues to drift slowly inward to  be again entrained in the rising 
column. 

The t,heoretical flow patterns illustrated in figure 2 may be compared with the 
right-hand halves of experimental photographs for the same geometry presented 
in figure 4(a)-(e) of the companion paper, Torrance, Orloff & Rockett (1969). The 
experimental flows correspond respectively to Gr = 8 x 105, 4 x lo6, 4 x 107, 
3 x los and 1 x lolo. For Gr = 4 x lo6 and 4 x lo7 a direct comparison can be made 
between theory and experiment. The experimental photographs a t  Gr = 8 x lo5 
and 3 x 108, on the other hand, must be compared with the nearest theoretical 
curves, Gr = 4 x 105 and 4 x 108, respectively. For Gr < 4 x 107 the agreement 
between theory and experiment is seen to be excellent. The experimental 
results a t  Gr = 3 x 108 closely resemble the theoretical curves a t  Gr = 4 x los 
(figure 2 (e)). Rather surprisingly, the experimental flow near the ceiling resembles 
somewhat more closely the theoretical flow a t  Gr = 4 x log (figure 2 ( f ) ) .  This 
discrepancy suggests that false viscosity (discussed in connexion with equations 
(7)) is present near the ceiling in the numerical flow a t  Gr = 4 x lo8. I n  the ex- 
periments, turbulence was observed for Gr 2 1.2 x lo9, and the experimental 
photograph at  Gr = 1 x 1 0 1 O  illustrates a predomina.ntly turbulent flow. I n  this 
photograph, only the flow near the floor is laminar. The theoretical calculation 
was laminar and completely stable a t  Gr = 4 x lo9, presumably due to the 
introduction of false viscosity. As will be noted in $4.3, the theoretical calculation 
did develop a periodic vortex shedding when extended to  Gr = 4 x lolo. 

The variation of the steady-state temperature field with Gr is illustrated 
in figure 3(a ) - ( f ) .  Figure 3(a) presents the set of isotherms corresponding 
to static conduction; whereas 3 (b)-( f )  correspond respectively to the sequence 
Gr = 4 x lo* to  4 x 108. The numerical value of temperature 6' is indicated for 
each isotherm. The heat source on the floor is a t  8 = 1, and the remaining solid 
walls are a t  6' = 0. The floor temperature distribution is shown in figure 4(a). 
The open circles are the grid approximation of the boundary conditions (6). 
The dashed line represents the floor temperature distribution appropriate for the 
lumped mass system. 

Isotherms corresponding to static conduction (figure 3 (a) )  were obta.ined with 
the present numerical scheme by setting Gr = 0 in (9). The effect of convective 
motion on the temperature field can then be appraised by referring to the static 
conduction field. Figure 3 ( b ) - ( f )  clearly illustrate the effect of the rising column 
of hot gas on the isotherms above the heat source. Only minor changes of the 
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isotherms in this region occur for Gr > 4 x lo7 (figure 3 ( e ) )  and the column may 
therefore be considered thermally developed. For Gr = 4 x lo9 and 4 x 1O1O the 
sets of isothermals were found to be similar to those a t  4 x lo8 (figure 3 (f)) and 
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were not reproduced here. 
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FIGURE 4. Temperatwe (0)  profilea across the enclosure; (a) floor, X = 0, --0- -, mesh 
approximation, 51 x 21 grid; ( b )  midheight, X = 0.5; (c) midradius, R = 0.5.  Results are 
shown for static conduction and various Grashof numbers, Gr. 

Away from the rising column a thermally stratified region develops for 
c71r 2 4 x 106 (figure 3 (ti)-(f)). This is made apparent by focusing attention on the 
isotherms # = 0.001 (0-001) 0.005. These isotherms are roughly equidistant and 
parallel to the floor for a large portion of the flow region shown in figure 3 (f). 
Thus, in this region the temperature increases linearly with increasing height 
above the floor. This is the region discussed earlier in which the air flows relatively 
slowly inward to be entrained into the rising hot column. 

The linear temperature field associated with the higher Grashof numbers is 
illustrated in another way in figure 4(c), which presents the temperature profile 
at  R = 0.5 as a function of height X .  The thermal development of the rising 
column is apparent in figure 4 ( b ) ,  which shows the temperature profile a t  X = 0.5 
as a function of radius R. As Gr increases the hot column becomes more intense 
and more localized. 

4.2. Transient flow development 
The flow and temperature fields discussed in the previous section (figures 2 and 
3 )  were obtained by carrying the theoretical calculation from the initial quiescent 
condition forward in time until steady state was achieved. The transient flow 
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fields calculated during this process are illustrated for two values of Gr, 4 x lo6 
and 4 x 108, in figures 5 and 6 respectively. The results for Gr = 4 x lo6 illustrate 
the general features of the transient flows for low Grashof numbers; whereas the 
results at  Gr = 4 x 108 are more typical of the transient flows for the higher 
Grashof numbers ( 2  4 x 10‘). Figures 5 and 6 are each composed of several 
streamline graphs, arranged in order of increasing time. The captions list the time 
7, the maximum value of stream function Y,,,, and, when less than zero, the 
minimum value of stream function Ymin. Solid streamlines correspond to positive 
Yr values of 4, # , g  and 3 of Y,,,, whereas the dashed streamlines correspond to 
negative Y values of 8 and 8 of Ymin. The dot-dash streamline, together with the 
solid walls and centreline, have numerical value Y = 0. [Figures 5(f)  and S(1) 
illustrate the same steady-state flows as figures 2 (c) and (e) respectively, but the 
streamlines are plotted for a different set of numerical values of Y.] 

The developing flow for Gr = 4 x los is shown in figure 5 for times r ranging 
from 0.002 to 0.1. Immediately after the start of heating, a small ring vortex of 
hot fluid forms near the origin (figure 5 (a)). This vortex rises to the ceiling ( 5  ( b )  
and ( c ) )  and moves radially outward from the centreline (5(d) and ( e ) ) .  The flow 
pattern then gradually develops into the steady-state field (figure 5 (f)). A small 
corner eddy develops during the transient and is shown at its maximum size in 
figure 5 (e).  

A similar sequence of graphs for the developing flow at Gr = 4 x lo8 is pre- 
sented in figure 6 for times r ranging from 0.0002 to 0.03. Comparison of the 
transients at  Gr = 4 x lo6 and 4 x 108 reveals both a similarity and a difference. 
The similarity is in the motion of the rising ring vortex, the first five graphs at  
Gr = 4 x lo8 (S(a)-(e))  and at  Gr = 4 x  lo6 (5(a)-(e)) being almost interchange- 
able. Indeed, if the time co-ordinate 7 is replaced by r JGr then the time levels 
are also coincident.? Thus, a similarity exists among the enclosure flows at early 
times before the viscous drag of the walls becomes important. This follows from 
the basic equations, (1)-(4), provided diffusion effects are negligible (Scorer 
1957). Flows at  different Gr are found to be similar if Y, Q, U ,  V and r are replaced 

by ‘YIJGr, QIJGr, UlJGr, VlJGr and 7 JGr. 
A striking difference between the flows at  Gr = 4 x 106 and 4 x 108 is also 

apparent. The eddy in the lower right corner at  Gr = 4 x 108 (figure 6 (e)) does not 
immediately diminish in size as it did at  Gr = 4 x lo6 (figure 5 ( e ) ) .  Instead the 
eddy grows in size (figures 6 (f)-(h)) and then washes away into the main flow 
(6 (i) and ( j ) ) .  Its effect on the flow is evident for a long time (6 (k)) before steady 
conditions are achieved (6 (1)). This corner eddy originates when fluid heated by 
the hot spot slides over cold fluid in the corner. The corner eddy heats up slowly 
and eventually floats up into the inward moving stream. In general, the size of 
this corner eddy increases with increasing Gr. 

Note that the transient streamlines shown in figures 5 and 6 are represented in 
the Eulerian point of view. The alternate Lagrangian point of view follows the 
path of individual fluid elements. With such a description, the initial ring vortex 
would appear as a rising mushroom cloud. 

t For comparison purposes, simply multiply the 7 values of figure 6 by ten. 
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4.3. Vortex shedding at Gr = 4 x 1O1O 

The preceding sections presented results for Gr in the range 4 x lo4 to 4 x lo9. 
Comparison with experiment (Torrance et al. 1969) supports the validity of a 
laminar flow calculation for Gr 5 1.2 x lo9. Just above Gr z 1-2 x 109, experiment 
indicates the onset of turbulence. As discussed in 53.2 of the aforementioned 
paper, the first appearance of turbulence was in the form of small eddies which 
appeared semi-periodically a t  the edge of the rising column as it impacted the 
ceiling. These eddies rolled out along the ceiling, turned downward near the outer 
wall, and eventually diffused into the general flow of air returning to the rising 
column. Except for these eddies, the flow was laminar. The numerical calculations 
are two-dimensional, and cannot describe three-dimensional turbulent motion. 
I n  addition, a false numerical viscosity is introduced at  high Gr (as evidenced by 
the completely stable theoretical flow at  Gr = 4 x lo9 in figure 2 (f)). Nevertheless, 
for the purpose of exploring the onset of laminar instability, the present numeri- 
cal method was applied to still higher Gr. 

&4ccordingly, a run at Gr = 4 x 1010 starting from the initid quiescent con- 
ditions was undertaken. The initial transient flow exhibited the same gross 
features as already noted for Gr = 4 x lo* in figure 6. After the corner eddy had 
washed into the main flow, the calculation revealed a new phenomenon. Namely, 
a periodic shedding of ring vortices within the fluid. These vortices originated 
near the corner formed by the ceiling and outer wall of the cylindrical enclosure. 
After shedding, these vort,ices drifted along with the general flow until diffused. 
Extension of the calculation revealed that a time-independent fully developed 
flow did not exist. Instead, the fully developed flow contained this periodic vor- 
tex shedding. The similarity between this vortex shedding and the experi- 
mentally observed onset of turbulence described above is striking. 

The fully developed theoretical flow for Gr = 4 x 1O1O can be studied with the 
aid of figure 7, which illustrates the streamline field a t  a particulr instant of time 
(T = 04081). The streamlines correspond to specified fractions of ‘Ip,,,, the value 
of which is listed in the caption. Within the flow field four small vortices appear 
which are centred a t  A ,  B, C and D. The locations of these vortices were de- 
termined by searching the stream function field for local maxima. In all the vor- 
tices, the rotational sense is clockwise. 

The four vortices were generated in succession at  equally spaced intervals of 
time corresponding to  the vortex shedding period. For the conditions of the 
figure, the period was 0-00105 dimensionless time units. The vortex A is about to 
be shed from the general flow of fluid along the 0.9 streamline. The vortices B, C 
and D were similarly shed 0.00165, 0.00330 and 0.00495 time units earlier, 
respectively. Vortex A will move successively to positions B, C, and D after 
intervals of 0.00165 time units. In  the course of movement along its path, the 
vortex is diffused and decreases in strength. At, position D, the vortex is suffici- 
ently weak so as to be barely discernible. Indeed, a short time later it disappears 
into the general fluid motion. 

The vortex shedding which appeared a t  Gr = 4 x 10’0 was adequately resolved 
with a grid spacing of AX = 0.02 and AR = 0.05. It was our suspicion that 
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flows at higher Gr would require a somewhat finer grid to maintain adequate 
spatial resolution. The corresponding increase in computer time did not seem 
justifiable; therefore, calculations at Gr greater than 4 x 1O1O were not considered. 

0.5 1.0 

R 

FIGURE 7. Streamline field for (2% = 4 x  1O1O at, time 7 = 0.0081. The &reamlines come- 
spond to  specified fractions of the maximum value of stream function, Ym,, = 366. Four 
small vortices appear within the flow a t  A ,  B, C and D.  

4.4. Heat transfer rates, velocity proJiles and trends with Gr 

The heat transfer results are conveniently discussed in terms of the rate of heat 
addition (oin) or heat removal (&,,,) from the enclosure. These are total quanti- 
ties, obtained by integration over the areas of the heat source and cold walls, 
respectively. The integration is performed by computing the heat transfer from 
wall mesh points to adjacent mesh points, as discussed in the paragraph at  the 
end of $3.2. The heat transfer rates discussed in this section apply for the ramp 
change in temperature at  the edge of the heat source shown by the dashed line in 
figure 4 (a).  This ramp is a close approximation of the floor temperature profile in 
the physical experiments of the companion paper. Both numerically and ex- 
perimentally, the step change in temperature specified by the boundary con- 
ditions (6) is difficult to achieve. The rates of heat transfer, while being finite for 
a ramp, would be infinite for a step. 

The heat transfer rates QIn or oout can be used to define an average heat 
transfer coefficient in terms of the heating or cooling area A and the imposed 
temperature difference AT = qb - To. 

Q = S  ~ Q = E A A T .  (16) 
A 

4 Fluid Mech. 36 
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This equation defines the rates of heat addition (&,,) or heat removal (Q,,,) when 
the area A is the heating or cooling surface, respectively. The average Nusselt 
number can be expressed in terms of Q as 

where 1 is a characteristic length, h the thermal conductivity of the fluid, and 
d the dimensionless heating or cooling area, at’ = A/P. 

r JGr 

FIGUFCE 8. Heat flow into (&,,/haAT) and out of (&,,/AaAT) the enclosure for various 
Grashof numbers (Gr) as a function of scaled time r J G r .  The temperature difference 
AT = (Th-To). 

Curves illustrating the heat transfer rates into and out of the enclosure as a 
function of time are presented in figure 8. The ordinate is the dimensionless ratio 
QlhaAT, which follows from (17) when the characteristic length is the enclosure 
height a. The abscissa is r,/Gr, a combination which scales the transients a t  
early times as discussed in $4.2.  The curve parameter is Gr, which ranges from 
4 x lo4 to  4 x 109. For each Gr two curves are shown, the upper and lower curves 
respectively corresponding to  the rates of heat transfer into (Qi,/haAT) and out 
of (Q,,,/hcrAT) the enclosure. The dashed line corresponds to  the steady-state 
static conduction value. 

A comparison of the upper curves a t  each Gr reveals that the heat transfer 
rates increase monotonically from the conduction value with increasing Gr. 
Furthermore, there is a similarity in the shape of the curves a t  higher Gr. A 
maximum in these curves appears at about r .&r = 6, and is followed by a slight 
undershoot before essentially approaching the steady-state value by r JGr = 12. 
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This overshoot and undershoot is caused by the rotation of the ring vortex shown 
in figures 5 (a)  and 6 ( a )  as it brings in first cold fluid and then warm fluid to the 
heat source. The steady-state heat transfer rate is achieved before the rising ring 
vortex reaches the ceiling, as shown in figures 5 (c)  and 6 (c) ,  which correspond to 
TJGT = 12. 

A comparison of the lower curves at each Gr in figure 8 also reveals some 
similarities. For 7 &r < 12, the rate of heat removal from the enclosure is low. 
This rate decreases with increasing Gr, as it becomes more difficult for heat to be 
conducted radially from the heat source to the nearby cold floor counter to the 
incoming flow. At about 7 JGr = 12, the rate of heat removal increases sharply 
as the hot, rising vortex hits the ceiling (figures 5(c)  and 6(c), for example). As 
the hot fluid spreads radially outward along the ceiling, the rate of heat removal 
continues to rise. For 7 4 G r  > 30, the cooling abilities of the vertical wall and 
floor are also brought into play, and the lower curve gradually approaches the 
upper curve. At the higher Gr, the heat transfer curves are generally similar for 
r JGr less than about 40. For r AGr greater than this value, the curves describing 
the rates of heat removal are not similar. These differences are associated with 
the development and movement of the corner eddy discussed in $4.2. 

The above discussion points out that the rate of heat addition to the enclosure 
achieves a steady value long before the flow itself is at steady state. In  particular, 
the steady rate exists before the rising vortex reaches the ceiling. Hence, we 
conclude that the rate of heat addition (&,/ha AT) is probably independent of 
enclosure shape. The numerical calculations thus provide the heat transfer rates 
for a related problem: the heated disk of diameter d ( = 2c) in an infinite horizontal 
flat plate with a floor temperature profile as shown by the dashed line in figure 
4 (a) .  Using d as the characteristic length, we introduce a mean Nusselt number 
Ru, from equation (17) and a Grashof number Gr, = gpATd3/v2. 

Theoretical and experimental results for steady-state heat transfer are shown 
in figure 9 with log mu, as ordinate and log Gr, as abscissa. The filled circles are 
numerical results from the present study, whereas the squares are experimental 
results from table 1 of the companion paper, Torrance et al. (1969). The agree- 
ment between experiment and theory is encouraging. For comparison, a curve is 
included which illustrates the heat transfer from spheres suspended in a gas. This 
is based on the experiments of Kyte, Madden & Piret (1953)) for the case when 
rarefied gas effects are absent. The two curves are generally similar. Both curves 
approach the static conduction value as Gr, --f 0. For large Gr,, Xu, is propor- 
tional to Gri for spheres and to Gri for the heated disk. The difference in exponents 
is a result of the two vastly different flow situations. 

At several times in the foregoing, we have discussed the scaling of the transient 
flows. Early in the transient, the time co-ordinate was scaled with 7 JGr, a result 
which follows from the basic equations when viscosity is neglected. For 7 JGr > 40 
in the transient, this scaling no longer applied because viscous drag on the walls 
had developed. Nevertheless, we can focus our attention on the end result of the 
transients, i.e. the fully developed flows, and inquire if they exhibit any scaling 
with Gr. Presumably, as Gr is increased, viscous effects become less important 
than inertia effects, and the velocities, stream function and vorticity ought to 

4-2 
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scale with UlJGr,  VlJGr, Y/.,/Gr and LllJGr, as in the early transient. For low 
Gr, when viscous effects are more important than inertia effects, the foregoing 
scaling would be UIGr, VIGr, YIGr  and QIGr. 

Figure 10 was prepared to display the variation of the maximum velocity and 
maximum stream function with Gr. The maximum vector velocity occurred 
along the centreline and is identical with the maximum U component. The 

5 2 -  
8 
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3 F 1 -  

I I  

18 

1 

3 4 4  I I I I I I I I I I I 
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- 

Spheres experiment 
- 

FIGURE 10. Maximum velocity U,,, and maximum stream function Y- wer8us Grashof 
number. 
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ordinate is log U,,, or logY,,, and the abscissa is log Gr. Comparison of the 
slopes of the curves for U,,, and Y,,, with the dashed lines, which are propor- 
tional to Gr and JGr, suggests a proportionality to Gr for low Gr and to AGr for 
large Gr. 

Gr = 4x lo4 4 x  lo6 
-0.1 I 1 I I I I I I I  

0 0.2 0.4 0.6 0.8 1.0 
R 

-0.04 0 0.04 0.08 

VIJGr 

FIGURE 11. Scaled velocity profiles across the enclosure for various Grashof numbers. 
(a)  UIJBr at the midheight, X = 0.5. ( b )  V/JGr at the mid-radius, R = 0.5. 

Additional evidence for the scaling of U and V with U/JQr and V/JGr  is 
provided in figure 1 1 .  Figure 1 1  (a)  presents the scaled vertical velocity profile 
U/JGr at the mid-height as a function of radius R. The UlJGr profiles for 
Cr > 4 x lo* are indistinguishable near the centreline from results for Gr = 4 x lo8. 
Figure 11 (b) shows the scaled radial velocity V /  JGr a t  the midradius as a function 
of height X. 

The authors would like to thank Professor Howard W. Emmons of Harvard 
University for many helpful discussions during the course of this work. This 
paper is a contribution of the National Bureau of Standards and is not subject to 
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